学术动态

位置: 首页 > 科学研究 > 学术动态 > 正文

学术报告十六:耿献国—Long-time asymptotics for the spin-1 Gross-Pitaevskii equation

华体会(中国)官方:2022-04-19 作者: 点击数:

报告华体会(中国)官方:2022年04月21日(星期14:00-15:00

报告地点:腾讯会议:546875385

人:耿献国 教授

工作单位:郑州大学

举办单位:华体会网页入口

报告简介: On the basis of the spectral analysis of the 4×4 Lax pair associated with the spin-1 Gross–Pitaevskii equation and the scattering matrix, the solution to the Cauchy problem of the spin-1 Gross–Pitaevskii equation is transformed into the solution to the corresponding Riemann–Hilbert problem. The Deift–Zhou nonlinear steepest descent method is extended to the Riemann–Hilbert problem, from which a model Riemann–Hilbert problem is established with the help of distinct factorizations of the jump matrix for the Riemann–Hilbert problem and a decomposition of the matrix-valued spectral function. Finally, the long-time asymptotics of the solution to the Cauchy problem of the spin-1 Gross–Pitaevskii equation is obtained.

报告人简介:耿献国,郑州大学数学与统计学院教授,博士生导师,郑州大学特聘教授。国务院政府特殊津贴专家,全国百篇优秀博士学位论文指导老师。从事的研究方向是可积系统及应用。曾在Commun. Math. Phys., Trans. Amer. Math. Soc., Adv. Math., J. Nonlinear Sci., SIAM J. Math. Anal.等刊物上发表论文。主持国家自然科学基金重点项目2项和多项国家自然科学基金面上项目等。


上一篇:学术报告十七:代数研讨会系列报告八则

下一篇:学术报告十五:陈勇—可积深度学习