学术动态

位置: 首页 > 科学研究 > 学术动态 > 正文

学术报告二十六:李春霞—An insight into the q-difference two-dimensional Toda lattice equation, q-difference sine-Gordon equation and their integrability

华体会(中国)官方:2022-04-22 作者: 点击数:

报告华体会(中国)官方:20220428日(星期四)15:00-16:00

报告地点:腾讯会议:603459195

报 告 人:李春霞 教授

工作单位:首都师范大学

举办单位:华体会网页入口

报告简介:In this paper, we first propose a generalized bilinear Backlund transformation and thus a generalized Lax pair for the bilinear q-difference two-dimensional Toda lattice (q-2DTL) equation. Next, starting from the known Darboux transformation for the noncommutative q-2DTL equation, we construct the existing Casoratian solutions to the bilinear q-2DTL equation and its bilinear Backlund transformation obtained by Hirota's bilinear method. And then, we successfully construct the binary Darboux transformation for the q-2DTL equation, based on which, Grammian solutions expressed in terms of quantum integrals are established for both the bilinear q-2DTL equation and its bilinear Backlund transformation. This reveals the profound connections between Darboux transformation and Hirota's bilinear method. In the end, by considering the 2-periodic reductions on the corresponding results of the q-2DTL equation, a q-difference sine-Gordon equation, a modified q-sG equation and their solutions are reported for the first time.

报告人简介:

李春霞,首都师范大学数学科学学院教授,博士生导师,研究方向为孤子理论与可积系统。中国科学院博士,清华大学博士后,格拉斯哥大学博士后(英国皇家学会资助)。访问剑桥大学牛顿数学科学研究所、美国University of South FloridaCollege of Charleston。曾主持国家自然科学基金项目3项、北京市自然科学基金面上项目2项等。曾在Journal of Nonlinear Science, Proceedings of the Royal Society A, Journal of Physics AInverse Problems等刊物上发表论文。


上一篇:学术报告二十七:石东洋— Super-convergence analysis for some nonlinear problems with FEMs

下一篇:学术报告二十五:周子翔—非局部 Davey-Stewartson I方程的整体孤立子解和 dromion 解