学术动态

位置: 首页 > 科学研究 > 学术动态 > 正文

学术报告103:耿献国 — Tetragonal curves and algebro-geometric solutions to semi-discrete Boussinesq equations

华体会(中国)官方:2024-11-28 作者: 点击数:

报告华体会(中国)官方:2024年11月29日(星期五)14:00-15:00

报告地点:腾讯会议:718-638-2507 密码:1806

报 告 人:耿献国 教授

工作单位:郑州大学

举办单位:华体会网页入口

报告简介:

The hierarchy of the semi-discrete Boussinesq equations associated with a discrete 4×4 matrix spectral problem has been derived by means of the zero-curvature and the Lenard recursion equations. The tetragonal curve is introduced by resorting to the characteristic polynomial of the Lax matrix for the semi-discrete Boussinesq hierarchy, upon which the Baker-Akhiezer functions, meromorphic functions, Abel differentials, and Riemann theta functions are constructed. Finally, we derive the algebro-geometric solutions to the semi-discrete Boussinesq hierarchy.

报告人简介:

郑州大学数学与统计学院,二级教授,博士生导师,郑州大学特聘教授。国务院政府特殊津贴专家,全国百篇优秀博士学位论文指导老师。从事的研究方向是可积系统及应用。曾在Commun. Math. Phys., Trans. Amer. Math. Soc., Adv. Math., J. Nonlinear Sci., SIAM J. Math. Anal., Int. Math. Res. Not. IMRN, Nonlinearity等刊物上发表论文。主持2项国家自然科学基金重点项目和多项国家自然科学基金面上项目等。获得河南省自然科学一等奖和河南省科学技术进步奖二等奖。所带领的研究团队被评为河南省可积系统及应用研究创新型科技团队。

上一篇:学术报告104:林丽双 — Partition identities and partition congruences

下一篇:学术报告102:乔中华 — Global-in-time stability analysis for the second-order ETD scheme for the phase field crystal equation